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Resumo
Neste trabalho será apresentado um modelo teórico analiticamente solúvel para o aprisionamento
em vórtice de gases atômicos em um condensado de Bose-Einstein binário. O sistema tratado é
constituído de duas espécies atômicas condensadas em regime imiscível, considerando um grande
desbalanço entre seu número de átomos. Nessas condições, a equação de Gross-Pitaevskii que
rege a espécie majoritária se desacopla, permitindo atribuir a ela uma solução de vórtice único (1).
Dessa forma, seu perfil de densidade age como um pseudo-potencial harmônico que aprisiona a
espécie minoritária no núcleo de seu vórtice. A partir desse potencial efetivo foi calculada a nova
densidade de estados e temperatura crítica de condensação da espécie aprisionada. Explorando
a estabilidade da configuração proposta, foi encontrado um limite completamente analítico no
qual a espécie aprisionada impede o decaimento por estado de core da majoritária (2), o que
pode ser útil na estabilização e imageamento in situ de vórtices em condensados.

Palavras-chave: Condensado de Bose-Einstein. Mistura de gases atômicos. Vórtices.
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1 Introdução

A condensação de Bose-Einstein é uma transição de fase que ocorre em sistemas bosônicos
abaixo de uma temperatura crítica próxima do zero absoluto, quando o comprimento de onda
térmico de seus átomos é comparável à distância média entre eles. Esse fenômeno é caracterizado
pela ocupação macroscópica de um único estado quântico e pode apresentar diversas propriedades
interessantes, como superfluidez e vórtices de circulação quantizada. Sua descoberta impulsionou
à física de átomos ultrafrios, que atualmente é estudada por mais de 200 grupos de pesquisa ao
redor do mundo.

Após a primeira produção experimental de um condensado de Bose-Einstein em 1995 (3),
técnicas cada vez mais sofisticadas para resfriar e manipular gases atômicos foram desenvolvidas,
permitindo um finesse nunca antes visto na reprodução e controle de sistemas de muitos corpos.
Dentre eles, há grande interesse no estudo de condensados binários, constituídos pela mistura de
duas espécies atômicas distintas. Estas podem ser dois estados hiperfinos de um mesmo átomo
(4), isótopos bosônicos ou simplesmente átomos diferentes (5).

A interação entre as espécies condensadas trás uma dinâmica nova que pode ser explorada
de diferentes formas. Por exemplo, em experimentos de misturas atômicas, por apresentarem
temperaturas críticas de condensação distintas, uma das espécies irá se condensar primeiro,
fazendo com que a segunda atinja a condensação por termalização, no processo de sympathetic
cooling (6). Aplicações como essa são muito importantes, pois contribuem com novos parâmetros
que podem ser manipulados experimentalmente.

Em um experimento com dois estados hiperfinos do átomo de 87Rb, o grupo de pesquisa
liderado por E. A. Cornell foi capaz de produzir um condensado binário nucleando vórtices
em somente uma das espécies (7). Baseando-se nisso, este trabalho propõe uma abordagem
teórica analiticamente solúvel para descrever o aprisionamento de uma espécie atômica no
núcleo de um vórtice de outra espécie em um condensado composto. Aqui, argumentamos que
o desenvolvimento dessa ideia apresenta aplicações na estabilização e visualização in situ de
vórtices em experimentos com misturas de superfluidos atômicos.
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2 Formalismo e Metodologia

2.1 Mecânica Estatística
A condensação de Bose-Einstein surge no tratamento estatístico do gás ideal de bósons,

partículas de spin inteiro. Esse problema é discutido em diversos livros texto de mecânica
estatística e começa com a tentativa de determinar a ocupação média dos estados de energia do
sistema. Com as considerações adequadas é simples concluir que ela obedece (8, 9)

⟨n⟩ (β (ϵ− µ)) = 1
z−1eβϵ − 1 , (2.1)

onde µ corresponde ao potencial químico, z = eβµ à fugacidade e β = 1/kBT . Essa grandeza,
chamada de número de ocupação, dá a ocupação média de um estado de energia ϵ a uma
temperatura T . Como ⟨n⟩ ≥ 0, vemos que necessariamente µ ≤ 0.

O potencial químico cresce à medida que a temperatura diminui e, abaixo de uma determinada
temperatura crítica TC , se torna igual ao menor estado de energia do sistema, que é escolhido
como ϵ = 0. Matematicamente, isso acarreta na divergência de ⟨n⟩ (0), que se traduz fisicamente
em um aumento abrupto e macroscópico da ocupação do estado fundamental, caracterizando
uma transição de fase – a condensação. A partir desse ponto, qualquer diminuição adicional
de temperatura faz com que cada vez mais partículas ocupem o estado fundamental, até sua
ocupação total em T = 0 (9–10).

A soma dos números de ocupação de todos os estados deve recuperar o número de partículas
do sistema, N . Uma forma conveniente de lidar com essa soma é tratá-la no limite contínuo (9),
onde ela se torna uma integral sobre a densidade de estados D (ϵ):

N =
∑
ϵi

⟨n⟩ [β (ϵi − µ)] →
∫ ∞

0
⟨n⟩ (β (ϵ− µ))D (ϵ) dϵ. (2.2)

A integral acima conta somente estados termicamente excitados, já que D (0) = 0 (10). Para
representar o fenômeno de ocupação macroscópica, a contagem do estado fundamental deve ser
feita separadamente inserindo um termo N0:

N = N0 +
∫ ∞

0
⟨n⟩ (β (ϵ− µ))D (ϵ) dϵ = N0 +NT (2.3)

A equação (2.3) trás uma relação útil entre o número de partículas e a temperatura, separando
a porção condensada e não condensada, o que permite estudar e visualizar a transição de fase
com mais facilidade. A ocupação do estado fundamental é efetivamente nula na faixa T ≥ TC

(11), fato que define a temperatura crítica de condensação:

N =
∫ ∞

0
⟨n⟩ (ϵ/kBTC)D (ϵ) dϵ (2.4)
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2.2 Segunda Quantização
Estamos interessados em estudar a dinâmica de um sistema de N bósons idênticos que

interagem entre sí através de V (ri, rj) e estão confinados em um potencial Vext (ri, t). O
hamiltoniano do problema, na representação de partícula única, é dado pela equação (2.5).

Ĥ =
N∑

i=1

[
− ℏ2

2m∇2
i + Vext (ri, t)

]
+ 1

2

N∑
i,j=1

V (ri, rj) =
N∑

i=1
Ĥ0 (ri, t) + 1

2

N∑
i,j=1

V (ri, rj) (2.5)

Quase toda abordagem teórica envolvendo gases de Bose diluídos faz uso da representação do
número de ocupação, que explora a indistinguibilidade das partículas. A ideia básica é trabalhar
com estados que representam a ocupação dos níveis de energia do sistema ao invés dos estados
de energia individuais de cada partícula. Assim, seus operadores podem ser reescritos em termos
dos operadores de criação â†

i e aniquilação âi.

ψ̂† (r, t) =
∑

i

â†
i (t)φ∗

i (r, t) ψ̂ (r, t) =
∑

i

âi (t)φi (r, t) (2.6)

Nesse contexto, é mais conveniente definir ψ̂† e ψ̂, chamados de operadores de campo de
Bose. Eles representam a adição ou remoção de uma partícula na posição r e tempo t. Os pesos
φi correspondem às funções de partícula única do i-ésimo estado de energia e codificam sua
probabilidade. Essa abordagem permite reescrever a equação (2.5) como (13)

Ĥ =
∫

drψ̂† (r, t) Ĥ0ψ̂ (r, t) + 1
2

∫
dr

∫
dr′ψ̂† (r, t) ψ̂† (r′, t)V (r − r′) ψ̂ (r′, t) ψ̂ (r, t) . (2.7)

A partir daqui, a forma mais simples (e usual) de tratar o problema é aproximar a interação
entre as partículas por um potencial de contato

V (r − r′) = 4πℏ2a

m
δ (r − r′) = gδ (r − r′) , (2.8)

onde a é o comprimento de espalhamento de onda S. Isso equivale a assumir que os efeitos
completos do potencial de interação são reproduzidos por colisões perfeitamente elásticas entre
os átomos no regime de baixas energias (13). Assim, a equação (2.7) se reduz a

Ĥ =
∫

drψ̂† (r, t) Ĥ0ψ̂ (r, t) + g

2

∫
drψ̂† (r, t) ψ̂† (r, t) ψ̂ (r, t) ψ̂ (r, t) , (2.9)

que pode ser utilizada para deduzir a dinâmica dos operadores de campo no esquema de
Heisenberg:

iℏ
∂ψ̂

∂t
=
[
ψ̂, Ĥ

]
= Ĥ0ψ̂ (r, t) + gψ̂† (r, t) ψ̂ (r, t) ψ̂ (r, t) . (2.10)

A equação (2.10) contém toda informação que se pode esperar obter do sistema, resumindo o
problema a encontrar diferentes técnicas para extraí-la (13).
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2.3 Equação de Gross-Pitaevskii
Em um sistema com um único estado macroscopicamente ocupado e devidamente caracteri-

zado, é natural decompor os operadores de campo em

ψ̂ (r, t) = â0 (t)φ0 (r, t) +
∑
i ̸=0

âi (t)φi (r, t) = ϕ̂ (r, t) + δ̂ (r, t) (2.11)

onde ϕ̂ corresponde à porção de átomos condensada e δ̂ à porção não condensada, tipicamente
associada a flutuações térmicas. Nesse contexto, também podemos assumir uma aproximação de
campo médio para ϕ̂, delegando toda dependência operacional à δ̂ (13).

ϕ̂ →
〈
ϕ̂
〉

= ϕ (r, t) =
√
N0φ0 (r, t) (2.12)

A equação de Gross-Pitaevskii (GPE) considera, além da teoria de campo médio, um regime
de temperatura nula, onde N0 = N e δ̂ = 0. Partindo da equação (2.9), essas hipóteses podem
ser utilizadas para construir

E [ϕ∗] =
∫

dr

[
− ℏ2

2mϕ∗∇2ϕ+ ϕ∗Vext (r)ϕ+ g

2 (ϕ∗)2 (ϕ)2
]
, (2.13)

cuja minimização pelo princípio variacional, impondo a conservação do número de partículas
ligada a um potencial químico µ = δE/δN , produz a GPE independente do tempo:

− ℏ2

2m∇2ϕ (r) + Vext (r)ϕ (r) + g |ϕ (r)|2 ϕ (r) = µϕ (r) (2.14)

Apesar de desprezar flutuações térmicas, sua implementação numérica dá uma boa descrição da
dinâmica de condensados para diversos problemas e faixas de temperatura (13). A dependência
temporal pode ser obtida imediatamente da equação (2.10):

− ℏ2

2m∇2ϕ (r, t) + Vext (r)ϕ (r, t) + g |ϕ (r, t)|2 ϕ (r, t) = iℏ
∂ϕ

∂t
(2.15)

Note que a definição de ϕ (r, t), chamada de função de onda do condensado, implica uma
normalização pelo número de partículas:∫

dr |ϕ (r)|2 = N0 (2.16)

Para Vext = 0, uma solução imediata da equação (2.14) é dada por ϕ (r) constante. Se
µ < 0, necessariamente |ϕ|2 = 0, como esperado. Se µ ≥ 0, toda função ϕ =

√
neiΘ, onde n

é a densidade de partículas do condensado e Θ ∈ [0, 2π], é uma solução válida, ilustrando a
quebra espontânea da simetria de gauge do sistema, consequência da transição de fase (14).
Essa solução mostra que o potencial químico de um condensado uniforme é dado por µ = gn.
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2.4 Vórtices e sua estrutura
A equação de Gross-Pitaevskii pode ser reformulada como um par de equações hidrodinâmicas,

trazendo novas interpretações físicas. Isso é feito através da transformação

ϕ (r, t) =
√
n (r, t)eiΘ(r,t), (2.17)

onde n (r, t) corresponde à densidade do condensado. Definindo um campo de velocidades
v (r, t) = (ℏ/m) [∇Θ (r, t)], as partes real e imaginária da equação (2.15) se separam:

m

[
∂v

∂t
+ (v · ∇) v

]
= −∇

[
− ℏ2

2m

(
1√
n

∇2√n
)

+ Vext + gn

]
(2.18)

∂n

∂t
+ ∇ · (nv) = 0 (2.19)

A equação (2.18) é análoga à equação de Euler para um fluido ideal (13, 1), enquanto (2.19)
é claramente uma equação de continuidade. A princípio, como v (r, t) é definido a partir do
gradiente de uma função escalar, o fluido é irrotacional. Isso significa que a fase de ϕ (r, t) não
deve mudar ao longo de uma curva fechada:

∆Θ ≡
∮

∇Θ · dl =
∫∫

(∇ × ∇Θ) · dA = 0 (2.20)

No entanto, caso v (r, t) apresente alguma singularidade, ∆Θ não necessariamente é zero. Assim,
para que ϕ (r, t) não seja multivalorada, é necessário que sua fase obedeça

∆Θ =
∮

∇Θ · dl = 2πν, ν ∈ Z. (2.21)

No caso simples onde Θ = νφ carrega toda a dependência angular de ϕ (r, t), o campo de
velocidades é completamente azimutal,

v = ℏν
m

1
ρ
φ̂, (2.22)

e sua circulação obedece exatamente a equação (2.21):

∇ × v = ℏν
m

2πδ (ρ) ẑ (2.23)

Para que a energia cinética não divirja em ρ = 0, o aumento de v deve ser acompanhado por
uma depleção abrupta na densidade do condensado ao longo do eixo z. Isso implica que há
uma linha bem definida de densidade nula ao redor da qual a fase do condensado muda de 2πν,
caracterizando o que é chamado de um vórtice de carga ν.

Substituindo uma solução do tipo ϕ (r) = f (ρ) eiνφ na equação (2.14) e considerando um
meio uniforme com um único vórtice sobre o eixo z, temos

− ℏ2

2m

[
1
ρ

∂

∂ρ

(
ρ
∂f

∂ρ

)]
+ ℏ2ν2

2mρ2f + gf 3 = µf. (2.24)
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Figura 1 – Solução numérica da equação (2.26) (linha sólida), com ν = 1, χ (0) = 0 e χ (∞) = 1;
Equação (2.27) (linha tracejada).
Fonte: PETHICK (1)

.

O termo proporcional a ν2 domina conforme ρ → 0, já que nesse caso f → 0. Por outro lado, para
ρ → ∞, a interação é dominante, recuperando o perfil de densidade uniforme (f 2 → n = µ/g).
O ponto em que ambos os termos são comparáveis define ξ, chamado de healing length ou
comprimento de coerência:

ℏ2ν2

2mξ2f ∼ gf 3 ⇒ ξ = ℏ√
2mgn (2.25)

O healing length dá uma ideia da escala de distância a partir da qual o perfil de densidade
do condensado regenera a depleção causada pelo vórtice (1). Assim, para estudar a estrutura
de um vórtice único, é conveniente reescrever a equação (2.24) em termos das quantidades
adimensionais x = ρ/ξ e χ = f/f0, com f 2

0 = n:

−1
x

∂

∂x

(
x
∂χ

∂x

)
+ ν2

x2χ+ χ3 − χ = 0 (2.26)

Neste trabalho, estamos interessados na solução de carga unitária ν = 1 (figura 1), que pode ser
aproximada por (1):

f (ρ) =
√
n

ρ√
ρ2 + 2ξ2 (2.27)

2.5 Decaimento por estado de core
Como vimos, condensados de Bose-Einstein podem apresentar vórtices quantizados, fenômeno

também observado no estudo de superfluidos. Com isso em mente, convém analisar a estabilidade
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desses sistemas e propor possíveis mecanismos de decaimento que possam dissipar momento
angular. Isso foi feito em um artigo publicado em 1997 (2) por D. S. Rokhsar, onde ele analisou
a estabilidade de vórtices em condensados na ausência de torque constante sobre o sistema.

Ele foi capaz de concluir que nenhum condensado aprisionado em um potencial com simetria
azimutal é capaz de sustentar vórtices indefinidamente sem a aplicação de um torque externo
constante. Para isso, ele propõe um mecanismo de decaimento no qual partículas do vórtice são
transferidas para um estado de quasipartícula de momento angular nulo, o qual ele chama de
estado de core (ou estado de núcleo). Essa transferência é energeticamente favorável e leva à
dissipação completa do vórtice, recuperando o estado fundamental da armadilha.

O estado de core é modulado pela sua interação com o próprio condensado rotacional, de
forma análoga ao tratamento de misturas, que será discutido a seguir e explorado posteriormente.
As ideias e discussões de Rokhsar foram utilizadas qualitativamente como base para uma das
análises deste trabalho, referente a estabilidade do sistema proposto. Isso e a determinação do
estado de core ficarão mais claros nas próximas seções.

2.6 Misturas
Para sistemas compostos por misturas de diferentes espécies atômicas, é fácil demonstrar

por argumentos análogos aos da seção 2.2 (1), que a equação (2.13) pode ser generalizada para

E [ϕ∗
i ] =

∫
dr

∑
i


[
− ℏ2

2m |∇ϕi|2 + Vext |ϕi|2 + gii

2 |ϕi|4
]

+
∑
j ̸=i

gij

2 |ϕi|2 |ϕj|2
 (2.28)

onde gij = 2πℏ2aij/mij é o parâmetro de interação entre as espécies i e j, sendo função da massa
reduzida mij e comprimento de espalhamento aij = aji. Considerando somente duas espécies (1
e 2), a minimização de (2.28) produz um par de GPEs acopladas:

− ℏ2

2m1
∇2ϕ1 + Vext |ϕ1|2 + g11 |ϕ1|2 ϕ1 + g12 |ϕ2|2 ϕ1 = µ1ϕ1 (2.29)

− ℏ2

2m2
∇2ϕ2 + Vext |ϕ2|2 + g22 |ϕ2|2 ϕ2 + g21 |ϕ1|2 ϕ2 = µ2ϕ2 (2.30)

Condensados compostos podem apresentar diferentes regimes de miscibilidade dependendo
da relação entre os parâmetros de interação gij. No regime miscível, eles obedecem

g11g22 > g2
12, (2.31)

e há uma superposição completa das nuvens atômicas de cada espécie. Para o regime imiscível,

g11g22 < g2
12, (2.32)

e há uma separação clara das nuvens atômicas. Esses limites podem ser encontrados comparando
a energia interna de cada configuração e são importantes para guiar a produção experimental
de misturas atômicas (1, 15).
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3 Desenvolvimento e Resultados

3.1 Modelo teórico
Começamos considerando uma mistura imiscível de duas espécies atômicas distintas, 1 e 2,

aprisionadas em um cilindro de volume V = πR2L. Como discutido, esse sistema é regido por
um par de equações estacionárias acopladas:

− ℏ2

2m1
∇2ϕ1 + g11 |ϕ1|2 ϕ1 + g12 |ϕ2|2 ϕ1 = µ1ϕ1 (3.1)

− ℏ2

2m2
∇2ϕ2 + g22 |ϕ2|2 ϕ2 + g21 |ϕ1|2 ϕ2 = µ2ϕ2 (3.2)

Ao impor grande desbalanço entre as espécies (N1 >> N2) e considerando parâmetros de
interação de mesma ordem (gii ∼ gij), as equações (3.1) e (3.2) podem ser aproximadas para

− ℏ2

2m1
∇2ϕ1 + g11 |ϕ1|2 ϕ1 = µ1ϕ1 (3.3)

− ℏ2

2m2
∇2ϕ2 + g21 |ϕ1|2 ϕ2 = µ2ϕ2 (3.4)

Isso faz com que a equação (3.3) corresponda a GPE de um condensado uniforme. Nosso interesse
é estudar o aprisionamento em vórtice, portanto atribuí-se a 1 uma solução de vórtice único e
carga unitária centrado na origem,

ϕ1 (ρ, φ, z) = √
n1

ρ√
ρ2 + a2 e

iφ, (3.5)

onde a =
√

2ξ corresponde ao raio do vórtice. Assim, a equação (3.4) se torna

− ℏ2

2m2
∇2ϕ2 + g21n1

ρ2

ρ2 + a2ϕ2 = µ2ϕ2. (3.6)

A interação repulsiva entre as espécies faz com que os átomos de 2 possam ocupar somente
posições próximas de ρ = 0, correspondendo a região de núcleo do vórtice, onde há grande
depleção no perfil de densidade de 1. Considerando esse fato, ao lidar com a segunda espécie
podemos expandir |ϕ1|2 ao redor de ρ = 0 e tomar como aproximação

ρ2

ρ2 + a2 ≈ ρ2

a2 . (3.7)

Isso faz com que (3.4) se torne

− ℏ2

2m2
∇2ϕ2 + g21n1

a2 ρ2ϕ2 = µ2ϕ2, (3.8)
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mostrando que o perfil de densidade da espécie majoritária aprisiona a minoritária como um
pseudo-potencial aproximadamente harmônico. A solução de (3.8) pode ser facilmente obtida
por separação de variáveis,

ϕ2 (ρ, φ, z) =
√

2m2ω2R2n2

ℏ
cos

(
πz

L

)
exp

(
−m2ω2

2ℏ ρ2
)
, (3.9)

onde ω2 é definido pelo potencial efetivo

Veff (ρ) = g21n1

a2 ρ2 ≡ 1
2m2ω

2
2ρ

2. (3.10)

3.2 Tratamento termodinâmico usual
Como exemplo rápido, podemos utilizar o potencial efetivo definido pelo modelo teórico para

determinar algumas propriedades termodinâmicas da espécie aprisionada em vórtice. Devemos
começar com o cálculo semiclássico da densidade de estados D (ϵ). Para um gás ideal de bósons
aprisionado por um potencial arbitrário, ela é dada por (12)

D (ϵ) = (2m)3/2

4π2ℏ3

∫
τ(ϵ)

dr
√
ϵ− V (r), (3.11)

onde τ (ϵ) corresponde ao volume disponível no espaço de fase, definido por ϵ = V (r). Substi-
tuindo V (r) pela equação (3.10), obtemos

D (ϵ) = L

πℏ3m2ω2
2

(2m2ϵ)3/2
∫ 1

0
u
√

1 − u2du =
√

2m3
2

π4ℏ6

[
V (πa2L)
g12N1

]
ϵ3/2 ≡ D0ϵ

3/2 (3.12)

Com a densidade de estados, podemos relacionar a temperatura ao número de partículas da
espécie aprisionada a partir da equação (2.3) (9). Assim, para T ≥ TC temos

N2 = D0

∫ ∞

0

ϵ
5
2 −1

z−1eβϵ − 1dϵ = D0 (kBT )5/2 Γ (5/2) g5/2 (z) , (3.13)

onde usamos
gp (z) = 1

Γ (p)

∫ ∞

0

xp−1

z−1ex − 1dx =
∞∑

n=1

zn

np
. (3.14)

Portanto, lembrando que z = 1 quando T = TC , a temperatura crítica de condensação da
segunda espécie é

TC =
[

N2

D0Γ (5/2) ζ (5/2)

]2/5

= 6, 693 × ℏ6/5

kBm
3/5
2

[
g12N1N2

V (πa2L)

]2/5

(3.15)

Vemos que a dependência de TC com os diferentes parâmetros do sistema satisfaz o que
se esperaria. Aumentar a intensidade do potencial de aprisionamento, seja pelo aumento do
número de átomos da espécie 1 ou do próprio parâmetro de interação g12, facilita a condensação
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da segunda espécie. Além disso, há uma dependência explícita com volume efetivo ocupado
pelo núcleo do vórtice (πa2L), justamente onde ocorre o aprisionamento. Esse resultado oferece
informações que seriam úteis na produção experimental do sistema proposto.

Por completeza, também podemos determinar a energia total da espécie aprisionada, que
serve de ponto de partida para avaliar as demais quantidades termodinâmicas do sistema. Assim,
seguindo o formalismo da mecânica estatística, obtém-se

E =
∫ ∞

0

ϵD (ϵ)
z−1eβϵ − 1dϵ = D0 (kBT )7/2 Γ (7/2) g7/2 (z) = 7

2N2kBT
g7/2 (z)
g5/2 (z) , (3.16)

que nos mostra que a capacidade térmica a volume constante apresenta uma descontinuidade
bem definida em T = TC (9):

∆CV =
[(
∂E

∂T

)
V

]T +
C

T −
C

= −35
4 N2kB

ζ (7/2)
ζ (5/2) (3.17)

Esses resultados não são uma consequência intrínseca ou nova do aprisionamento em vórtice,
mas sim uma ilustração do tratamento termodinâmico usual que é dado à condensação de
Bose-Einstein. Um estudo mais rigoroso deve considerar trocas térmicas entre as espécies, o que
requer modificar o modelo proposto. De qualquer forma, conhecer esse tratamento é importante
em qualquer contexto quando lidamos com sistemas de muitos corpos, por isso escolhemos
mostrá-lo.

3.3 Limite de estabilidade
O estado de core ϕ0 é um estado de quasipartícula construído pela transferência de partículas

do vórtice para um estado de momento angular nulo localizado em seu núcleo. Ele obedece[
− ℏ2

2m1
∇2 + 2g11 |ϕ1|2 − µ1

]
ϕ0 = µ0ϕ0, (3.18)

onde µ0 e µ1 (os potenciais químicos de ϕ0 e ϕ1) quantificam o custo (ou ganho) energético
devido a essa transferência (2). Rearranjando a equação (3.18) e substituindo |ϕ1|2, temos

− ℏ2

2m1
∇2ϕ0 + 2g11n1

ρ2

ρ2 + a2ϕ0 = (µ0 + µ1)ϕ0, (3.19)

que pelo mesmo argumento por trás da equação (3.8) pode ser aproximada para

− ℏ2

2m1
∇2ϕ0 + 2g11n1

a2 ρ2ϕ0 = (µ0 + µ1)ϕ0. (3.20)

Sua solução novamente pode ser obtida por separação de variáveis

ϕ0 (ρ, φ, z) =
√

2m1ω1R2n0

ℏ
cos

(
πz

L

)
exp

(
−m1ω1

2ℏ ρ2
)
, (3.21)
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onde ω1 é definido por
2g11n1

a2 ρ2 ≡ 1
2m1ω

2
1ρ

2. (3.22)

Para determinar se o sistema proposto é estável, podemos calcular explicitamente µ0 e µ1,
partindo dos funcionais de energia (3.23) e (3.24), e em seguida analisar como a segunda espécie
perturba sua configuração energética.

(µ0 + µ1)N0 =
∫

dr

[
− ℏ2

2m1
ϕ∗

0∇2ϕ0 + 2g11n1

a2 ρ2 |ϕ0|2
]

(3.23)

µ1N1 =
∫

dr

[
− ℏ2

2m1
ϕ∗

1∇2ϕ1 + g11 |ϕ1|4
]

(3.24)

Como ϕ0 é autofunção da equação (3.20), que é separável em um oscilador harmônico bidimen-
sional e uma partícula na caixa, imediatamente obtemos

µ0 + µ1 = ℏω1 + ℏ2π2

2m1L2 . (3.25)

Tratando-se de temperaturas próximas do zero absoluto, a contribuição cinética no eixo z pode
ser desprezada. Portanto, recuperando a =

√
2ξ, nos resta

µ0 + µ1 ≈ ℏω1 ⇒ µ0 ≈ 2g11n1 − µ1. (3.26)

Para determinar µ1, podemos reescrever o funcional (3.24) na forma

µ1N1 = N1

∫ R

0

{
ℏ2

m1R2

[
4a2ρ3 + ρ5

(ρ2 + a2)3

]
+ 2g11n1

R2

[
ρ5

(ρ2 + a2)2

]}
dρ ≡ N1 (K1 + U11) (3.27)

e realizar as integrações normalmente:

K1 = ℏ2

m1R2

[
1
2 log

(
R2 + a2

a2

)
+ R2 (R2 − 2a2)

4 (R2 + a2)2

]
(3.28)

U11 = 2g11n1

R2

[
R2 (R2 + 2a2)

2 (R2 + a2) − a2 log
(
R2 + a2

a2

)]
(3.29)

Uma vez que R/a >> 1, as expressões acima podem ser aproximadas por

K1 ≈ ℏ2

m1R2

[
log

(
R

a

)
+ 1

4

]
≈ ℏ2

m1R2 log
(
R

a

)
(3.30)

U11 ≈ g11n1

[
1 − 2a2

R2 log
(
R2

a2

)]
≈ g11n1 (3.31)

nos deixando com
µ1 ≈ g11n1 + ℏ2

m1R2 log
(
R

a

)
(3.32)

e portanto
µ0 ≈ g11n1 − ℏ2

m1R2 log
(
R

a

)
(3.33)
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Comparando os potenciais químicos obtidos, evidentemente o decaimento para o estado de
core é energeticamente favorável, uma vez que µ1 > µ0. Ambas as expressões apresentam um
termo adicional além da contribuição uniforme que corresponde a energia cinética do vórtice. A
dependência logarítmica está ligada ao campo de velocidades proporcional a 1/ρ típico de sua
estrutura (1). A transferência de uma partícula do vórtice para o estado de core é acompanhada
pela dissipação da sua energia cinética rotacional, acarretando numa redução da energia total do
condensado e do custo individual de cada transferência. Isso faz com que o condensado dissipe
momento angular e recupere seu estado fundamental.[

− ℏ2

2m1
∇2 + g12 |ϕ2|2 + 2g11 |ϕ1|2 − µ1

]
ϕ0 = µ0ϕ0 (3.34)

Agora, reinserindo a espécie 2 no núcleo do vórtice através da equação (3.34), é possível
determinar como sua presença afetará µ0 tratando a interação perturbativamente. Uma vez que

µ0 − µ1 = − 2ℏ2

m1R2 log
(
R

a

)
, (3.35)

para que a segunda espécie impeça o decaimento para o modo de core, o acréscimo de energia
devido a interação deve ser:

δµ0 = 1
N0

∫
drϕ∗

0

[
g12 |ϕ2|2

]
ϕ0 >

2ℏ2

m1R2 log
(
R

a

)
(3.36)

Substituindo ϕ0 e ϕ2 na integral acima e reorganizando os termos constantes, temos

δµ0 = 8R2g12n2m1ω1ω2m2

ℏ2L

∫ L

0
cos4

(
πz

L

)
dz
∫ ∞

0
exp

(
−m1ω1 +m2ω2

ℏ
ρ2
)
ρdρ, (3.37)

que resulta em
δµ0 = 3R2g12n2

2ℏ

(
m1ω1m2ω2

m1ω1 +m2ω2

)
. (3.38)

Com isso, recuperando as definições de ω1, ω2 e a, a expressão (3.36) se torna

3R2g12n2

a2

( √
g12m2√

g12m2 +
√

2g11m1

)
>

2ℏ2

m1R2 log
(
R

a

)
. (3.39)

Uma vez que x2 > log (x), é possível definir um limite para a estabilidade do sistema que
depende somente de parâmetros experimentalmente controláveis:

g12

1 +
√

2 (g11/g12) (m1/m2)
>

2ℏ2

3n2m1R2 (3.40)

A equação (3.40) nos mostra que, caso os parâmetros do sistema a satisfaçam, a energia
de interação entre as partículas do estado de core e da espécie 2 torna a transferência de
partículas do vórtice suficientemente custosa para impedir seu decaimento. A figura 2 ilustra
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Figura 2 – Diagrama de fases construído a partir das equações (2.32) e (3.40); Λ = 2ℏ2/3n2m1R
2.

Nele vemos os regimes onde ocorre ou não decaimento (ciano e verde) e o regime no
qual a mistura se torna miscível (roxo).
Fonte: Elaborada pelo autor.

como diferentes parâmetros afetam os regimes do sistema. Podemos ver que misturas em que
m2 > m1 apresentam regiões de instabilidade menores e que, em geral, a estabilização do sistema
poderia ser delegada ao ajuste dos parâmetros de interação inter e intra-espécies (16).

Esse limite por si só não é suficiente para afirmar que o sistema mantém sua vorticidade
indefinidamente, pois ele foi determinado sem a consideração de outros efeitos dissipativos. No
entanto, ele delimita condições que inviabilizam um canal de decaimento importante. Isso pode
ser levado em consideração na produção experimental de misturas de superfluidos, já que no
contexto proposto a segunda espécie pode ser usada como um elemento estabilizador para o
estado de vórtice da espécie majoritária, potencialmente estendendo seu tempo de vida. Essa
aplicação também pode apontar um novo caminho para aprimorar técnicas de visualização in
situ da dinâmica de vórtices, dispensando o uso de imageamento por expansão balística (17).

Esse trabalho é uma abordagem inicial e o modelo proposto é relativamente simplista, como
se pretendia. Apesar disso, ele pôde ser utilizado para obter resultados interessantes e serve de
base para o desenvolvimento de discussões mais rigorosas, através de sua modificação gradual.
Próximos passos devem investigar a validade e viabilidade da hipótese de grande desbalanço,
a dinâmica de modos coletivos do sistema (1) e considerar trocas térmicas e transferência de
vorticidade entre as espécies.
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4 Conclusões

Neste trabalho foi proposto um modelo teórico analiticamente solúvel para tratar o possível
aprisionamento em vórtice de gases atômicos. Nele, o sistema considerado é composto por
uma mistura de duas espécies atômicas condensadas em regime imiscível, no qual o número
de partículas de uma é muito superior a outra. Com uma aproximação de campo médio foi
demonstrado que a espécie majoritária, em estado de vórtice, age como um potencial harmônico
que aprisiona a espécie minoritária em seu núcleo.

O potencial efetivo estabelecido pelo modelo foi utilizado para determinar a densidade de
estados da espécie minoritária, partindo de uma abordagem semiclássica (9, 12). A densidade
de estados foi utilizada para determinar a nova temperatura crítica de condensação da espécie
minoritária devido ao aprisionamento em vórtice. Esse resultado apresentou-se autoconsistente
com a natureza física da condensação. Por completeza e como um exemplo ilustrativo, também
foi calculada sua energia total, utilizada para determinar uma descontinuidade na capacidade
térmica (9).

Seguindo o mecanismo de decaimento proposto por Rokhsar (2), foi avaliado como a esta-
bilidade do estado de vórtice é afetada pela presença da segunda espécie aprisionada em seu
núcleo. Foi demonstrado que o potencial químico do estado de core é estritamente negativo
em relação ao potencial químico do condensado rotacional, com uma diferença proporcional a
sua energia cinética. Esse resultado confirma o decaimento do vórtice e delimita o quanto a
segunda espécie deve perturbar a configuração energética do sistema para impedi-lo. Através
de uma análise perturbativa, foi determinado o acréscimo de energia devido a interação com a
segunda espécie, estabelecendo um limite para a estabilidade do sistema dependente somente
de parâmetros experimentalmente controláveis. Finalmente, foi argumentado que essa análise
aponta para possibilidades de desenvolvimento ou aprimoramento de técnicas de estabilização e
imageamento in situ de vórtices em condensados de Bose-Einstein (17).
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