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Resumo

Neste trabalho sera apresentado um modelo tedrico analiticamente solivel para o aprisionamento
em vortice de gases atémicos em um condensado de Bose-Einstein binario. O sistema tratado é
constituido de duas espécies atémicas condensadas em regime imiscivel, considerando um grande
desbalanco entre seu nimero de dtomos. Nessas condigoes, a equagao de Gross-Pitaevskii que
rege a espécie majoritaria se desacopla, permitindo atribuir a ela uma solugao de vértice tinico (1).
Dessa forma, seu perfil de densidade age como um pseudo-potencial harmonico que aprisiona a
espécie minoritaria no nucleo de seu vortice. A partir desse potencial efetivo foi calculada a nova
densidade de estados e temperatura critica de condensagao da espécie aprisionada. Explorando
a estabilidade da configuracao proposta, foi encontrado um limite completamente analitico no
qual a espécie aprisionada impede o decaimento por estado de core da majoritaria (2), o que

pode ser 1til na estabilizagao e imageamento in situ de vértices em condensados.

Palavras-chave: Condensado de Bose-Einstein. Mistura de gases atomicos. Vortices.
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1 Introducao

A condensacao de Bose-Einstein é uma transicao de fase que ocorre em sistemas bosonicos
abaixo de uma temperatura critica proxima do zero absoluto, quando o comprimento de onda
térmico de seus atomos é comparavel a distancia média entre eles. Esse fendomeno é caracterizado
pela ocupagao macroscopica de um tnico estado quantico e pode apresentar diversas propriedades
interessantes, como superfluidez e vértices de circulagdo quantizada. Sua descoberta impulsionou
a fisica de atomos ultrafrios, que atualmente é estudada por mais de 200 grupos de pesquisa ao
redor do mundo.

Apés a primeira produgao experimental de um condensado de Bose-Einstein em 1995 (3),
técnicas cada vez mais sofisticadas para resfriar e manipular gases atomicos foram desenvolvidas,
permitindo um finesse nunca antes visto na reproducao e controle de sistemas de muitos corpos.
Dentre eles, ha grande interesse no estudo de condensados binérios, constituidos pela mistura de
duas espécies atdomicas distintas. Estas podem ser dois estados hiperfinos de um mesmo atomo
(4), is6topos bosonicos ou simplesmente atomos diferentes (5).

A interagao entre as espécies condensadas tras uma dindmica nova que pode ser explorada
de diferentes formas. Por exemplo, em experimentos de misturas atomicas, por apresentarem
temperaturas criticas de condensacao distintas, uma das espécies ird se condensar primeiro,
fazendo com que a segunda atinja a condensacao por termalizacdo, no processo de sympathetic
cooling (6). Aplicagoes como essa sao muito importantes, pois contribuem com novos parametros
que podem ser manipulados experimentalmente.

Em um experimento com dois estados hiperfinos do 4tomo de 8" Rb, o grupo de pesquisa
liderado por E. A. Cornell foi capaz de produzir um condensado bindrio nucleando vértices
em somente uma das espécies (7). Baseando-se nisso, este trabalho propoe uma abordagem
tedrica analiticamente soluivel para descrever o aprisionamento de uma espécie atomica no
nucleo de um vértice de outra espécie em um condensado composto. Aqui, argumentamos que
o desenvolvimento dessa ideia apresenta aplicagoes na estabilizagao e visualizacao in situ de

vértices em experimentos com misturas de superfluidos atémicos.



2 Formalismo e Metodologia

2.1 Mecanica Estatistica

A condensacao de Bose-Einstein surge no tratamento estatistico do gas ideal de bdsons,
particulas de spin inteiro. Esse problema é discutido em diversos livros texto de mecanica
estatistica e comeca com a tentativa de determinar a ocupacao média dos estados de energia do
sistema. Com as consideragoes adequadas é simples concluir que ela obedece (8, 9)

(n) (B (€ — ) = ——

T (21)
onde p corresponde ao potencial quimico, z = e’# & fugacidade e 3 = 1/kpT. Essa grandeza,
chamada de ntimero de ocupacao, da a ocupagao média de um estado de energia ¢ a uma
temperatura 7. Como (n) > 0, vemos que necessariamente p < 0.

O potencial quimico cresce a medida que a temperatura diminui e, abaixo de uma determinada
temperatura critica T, se torna igual ao menor estado de energia do sistema, que ¢ escolhido
como € = (. Matematicamente, isso acarreta na divergéncia de (n) (0), que se traduz fisicamente
em um aumento abrupto e macroscépico da ocupagao do estado fundamental, caracterizando
uma transicdo de fase — a condensac¢ao. A partir desse ponto, qualquer diminuicao adicional
de temperatura faz com que cada vez mais particulas ocupem o estado fundamental, até sua
ocupagao total em 7' = 0 (9-10).

A soma dos numeros de ocupacao de todos os estados deve recuperar o niimero de particulas
do sistema, N. Uma forma conveniente de lidar com essa soma é trata-la no limite continuo (9),

onde ela se torna uma integral sobre a densidade de estados D (e):
N=> (n)[B(e&—p]— /0 (n) (6 (e = ) D (€) de. (2:2)

A integral acima conta somente estados termicamente excitados, ja que D (0) = 0 (10). Para
representar o fenomeno de ocupagao macroscépica, a contagem do estado fundamental deve ser

feita separadamente inserindo um termo Nj:
N =No+ [ (n) (8(e—p) D(e)de = No+ Ny (2.3)

A equagdo (2.3) tras uma relagao util entre o nimero de particulas e a temperatura, separando
a porcao condensada e nao condensada, o que permite estudar e visualizar a transicao de fase
com mais facilidade. A ocupacao do estado fundamental é efetivamente nula na faixa T" > T

(11), fato que define a temperatura critica de condensagao:

N = /0 " (n) (¢/kgTo) D (€) de (2.4)
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2.2 Segunda Quantizacao

Estamos interessados em estudar a dinamica de um sistema de N bdsons idénticos que
interagem entre si através de V (r;,7;) e estdo confinados em um potencial Ve (7;,1). O

hamiltoniano do problema, na representagao de particula tnica, é dado pela equacao (2.5).

R N h2 1 N N A
H=3 | =g Vit Ve (rot)| +5 2 Virar) =3 Ho(rit) + 3 Z Vi(riry)  (25)
i1 i,j=1 i=1 1] 1

Quase toda abordagem tedrica envolvendo gases de Bose diluidos faz uso da representacao do
numero de ocupacao, que explora a indistinguibilidade das particulas. A ideia basica é trabalhar
com estados que representam a ocupacao dos niveis de energia do sistema ao invés dos estados
de energia individuais de cada particula. Assim, seus operadores podem ser reescritos em termos

AT

dos operadores de criacao @, e aniquilacao a;.

= al (1) i (r,) =Yt (2.6)

Nesse contexto, é mais conveniente definir Q/JT e w, chamados de operadores de campo de
Bose. Eles representam a adi¢ao ou remoc¢ao de uma particula na posicao r e tempo t. Os pesos
p; correspondem as fungoes de particula tinica do i-ésimo estado de energia e codificam sua

probabilidade. Essa abordagem permite reescrever a equagao (2.5) como (13)

H= /clrwT ’I"t)H(ﬂ/} r,t) /d'r/drgbT rt)wT('r vV (r—r')z@(r',t)zﬁ(r,t). (2.7)

A partir daqui, a forma mais simples (e usual) de tratar o problema é aproximar a interacao

entre as particulas por um potencial de contato

Arha
m

Viir—7r)= d(r—r)=gd(r—7"), (2.8)

onde a é o comprimento de espalhamento de onda S. Isso equivale a assumir que os efeitos
completos do potencial de interacao sao reproduzidos por colisdes perfeitamente elasticas entre

os atomos no regime de baixas energias (13). Assim, a equagao (2.7) se reduz a

= [drd! (r,0) figh (r,0) + 5 [ drdt (r,0) 01 (r, ) (r ) 0 (r,1), (2.9)
que pode ser utilizada para deduzir a dinamica dos operadores de campo no esquema de
Heisenberg: A

0D g o ) o
S = [, H] = Hod (r,0) + 9" (1) (1) D 1), (2.10)

A equacao (2.10) contém toda informagao que se pode esperar obter do sistema, resumindo o

problema a encontrar diferentes técnicas para extrai-la (13).
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2.3 Equacao de Gross-Pitaevskii

Em um sistema com um tnico estado macroscopicamente ocupado e devidamente caracteri-

zado, é natural decompor os operadores de campo em

A

G () = do (£) o (1, 8) + D i (8) @i (r,t) = (r,t) + 0 (v, 1) (2.11)
i#0

onde (ﬁ corresponde a por¢ao de atomos condensada e A porcao nao condensada, tipicamente

associada a flutuagoes térmicas. Nesse contexto, também podemos assumir uma aproximacao de

campo médio para ngﬁ, delegando toda dependéncia operacional a 5 (13).

6 = (6) =0 (r,t) = \/Nowo (r,1) (2.12)
A equagao de Gross-Pitaevskii (GPE) considera, além da teoria de campo médio, um regime

de temperatura nula, onde Ny = N e 5 = 0. Partindo da equagao (2.9), essas hip6teses podem

ser utilizadas para construir
h2
B = [ dr |- go Vo 6V (r) 0+ (07 (07, 213

cuja minimizacao pelo principio variacional, impondo a conservagao do ntimero de particulas
ligada a um potencial quimico y = 6 E/0N, produz a GPE independente do tempo:
R _, 2

—5 Vo) + Vet (1) & (r) +glo(r)" ¢ (r) = o (r) (2.14)
Apesar de desprezar flutuagoes térmicas, sua implementacao numérica da uma boa descri¢ao da
dindmica de condensados para diversos problemas e faixas de temperatura (13). A dependéncia
temporal pode ser obtida imediatamente da equagao (2.10):

h? 0¢

—%V% (7,8) + Vet (1) & (m,8) + g |0 (r, O ¢ (1, 1) = ths, (2.15)

Note que a definicao de ¢ (r,t), chamada de fungdo de onda do condensado, implica uma

normalizacao pelo nimero de particulas:

[drio @) = Ny (2.16)

Para Vg = 0, uma solugdo imediata da equagao (2.14) é dada por ¢ () constante. Se
i < 0, necessariamente ]¢|2 = 0, como esperado. Se p > 0, toda funcio ¢ = /ne'®, onde n
¢ a densidade de particulas do condensado e © € [0, 2], é uma solugao valida, ilustrando a
quebra espontanea da simetria de gauge do sistema, consequéncia da transicao de fase (14).

Essa solugao mostra que o potencial quimico de um condensado uniforme é dado por pu = gn.
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2.4  \/ortices e sua estrutura

A equagao de Gross-Pitaevskii pode ser reformulada como um par de equagoes hidrodindmicas,

trazendo novas interpretacgoes fisicas. Isso ¢ feito através da transformacao

& (r.t) = \/n (r,t)e®TD), (2.17)

onde n (r,t) corresponde & densidade do condensado. Definindo um campo de velocidades

v (r,t) = (h/m)[VO (r,t)], as partes real e imaginaria da equacao (2.15) se separam:

ov |
m [é’t +(v-V) 'U] =-V [_2m (ﬁv ﬂ) + Vext +gn] (2.18)
on

A equagdo (2.18) é andloga a equagdo de Euler para um fluido ideal (13, 1), enquanto (2.19)
é claramente uma equacao de continuidade. A principio, como v (r,t) é definido a partir do
gradiente de uma funcao escalar, o fluido é irrotacional. Isso significa que a fase de ¢ (r,t) nao

deve mudar ao longo de uma curva fechada:
A@zj{V(a-dlz//(VxV(a)-dA:o (2.20)

No entanto, caso v (7, t) apresente alguma singularidade, A© nao necessariamente é zero. Assim,

para que ¢ (r,t) nao seja multivalorada, é necessario que sua fase obedeca
AO = ]{VG ‘dl =2, vel (2.21)

No caso simples onde © = v carrega toda a dependéncia angular de ¢ (r,t), o campo de

velocidades é completamente azimutal,
v=—-0, (2.22)

e sua circulac@o obedece exatamente a equagao (2.21):

VXxwv= @2775 (p) 2 (2.23)
m
Para que a energia cinética nao divirja em p = 0, o aumento de v deve ser acompanhado por
uma deplecao abrupta na densidade do condensado ao longo do eixo z. Isso implica que ha
uma linha bem definida de densidade nula ao redor da qual a fase do condensado muda de 27v,
caracterizando o que é chamado de um vértice de carga v.
Substituindo uma solugao do tipo ¢ (r) = f (p) €”¥ na equagao (2.14) e considerando um
meio uniforme com um unico vértice sobre o eixo z, temos

R?Jl1o (0 h?v?
— l (paiﬂ + mepgf +9f° = uf. (2.24)
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T T T
] ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, —
08| L E
x=flfo =
7 V2+x2, -7
0.6 - .~.”" Numerical solution 7
04 _
02F v .
O 1 1 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3 3.5 4

x=pl&

Figura 1 — Solu¢ao numérica da equagao (2.26) (linha sélida), com v =1, x (0) =0 e x (c0) = 1;
Equagao (2.27) (linha tracejada).
Fonte: PETHICK (1)

O termo proporcional a v domina conforme p — 0, j& que nesse caso f — 0. Por outro lado, para
p — 00, a interacdo é dominante, recuperando o perfil de densidade uniforme (f% — n = u/g).
O ponto em que ambos os termos sao comparaveis define £, chamado de healing length ou

comprimento de coeréncia:

h2v? 3

Wf ~gft = §= 2man (2.25)
O healing length da uma ideia da escala de distancia a partir da qual o perfil de densidade

do condensado regenera a deplegdo causada pelo vértice (1). Assim, para estudar a estrutura

de um vértice dnico, é conveniente reescrever a equacao (2.24) em termos das quantidades

adimensionais x = p/€ e x = [/ fo, com f¢ = n:

10 [ oy 2

e s N G | (2.26)
zO0x \ Ox z2

Neste trabalho, estamos interessados na solugao de carga unitaria v = 1 (figura 1), que pode ser
aproximada por (1):

fp) = \/ﬁ\/ﬁ (2.27)

2.5 Decaimento por estado de core

Como vimos, condensados de Bose-Einstein podem apresentar vortices quantizados, fendmeno

também observado no estudo de superfluidos. Com isso em mente, convém analisar a estabilidade



Capitulo 2. Formalismo e Metodologia 11

desses sistemas e propor possiveis mecanismos de decaimento que possam dissipar momento
angular. Isso foi feito em um artigo publicado em 1997 (2) por D. S. Rokhsar, onde ele analisou
a estabilidade de vortices em condensados na auséncia de torque constante sobre o sistema.

Ele foi capaz de concluir que nenhum condensado aprisionado em um potencial com simetria
azimutal é capaz de sustentar vortices indefinidamente sem a aplicacao de um torque externo
constante. Para isso, ele propoe um mecanismo de decaimento no qual particulas do vortice sao
transferidas para um estado de quasiparticula de momento angular nulo, o qual ele chama de
estado de core (ou estado de niicleo). Essa transferéncia é energeticamente favoravel e leva a
dissipagao completa do vortice, recuperando o estado fundamental da armadilha.

O estado de core é modulado pela sua interagdo com o proprio condensado rotacional, de
forma analoga ao tratamento de misturas, que sera discutido a seguir e explorado posteriormente.
As ideias e discussoes de Rokhsar foram utilizadas qualitativamente como base para uma das
andlises deste trabalho, referente a estabilidade do sistema proposto. Isso e a determinacao do

estado de core ficardo mais claros nas préximas secgoes.

2.6 Misturas

Para sistemas compostos por misturas de diferentes espécies atomicas, é facil demonstrar

por argumentos andlogos aos da segao 2.2 (1), que a equagao (2.13) pode ser generalizada para

* h? 2 2, Yii 4 Gij 2 2
Blg] = [drY S |5 Vol + Ve ol + Z 10| + X 2 jif 10y (2.28)
- 2m 2 oy 2
onde g;; = 2wh%a;;/m;; é o pardmetro de interagdo entre as espécies i e j, sendo fun¢io da massa
reduzida m;; e comprimento de espalhamento a;; = aj;,. Considerando somente duas espécies (1

e 2), a minimizacao de (2.28) produz um par de GPEs acopladas:

h2
—%VQ% + Vexs ’¢1|2 + g1 ’¢1|2 o1+ gi2 ’¢2|2 01 = 1Py (2.29)
1
- 2 2 2,
—%V P2 + Vext | Q2| + g2 |@2|” 2 + 921 |91]” 2 = padp2 (2.30)
2

Condensados compostos podem apresentar diferentes regimes de miscibilidade dependendo

da relacao entre os parametros de interacao g;;. No regime miscivel, eles obedecem

g11922 > 9%27 (2.31)

e h&d uma superposicao completa das nuvens atomicas de cada espécie. Para o regime imiscivel,

g11922 < 9%27 (2.32)

e ha uma separacao clara das nuvens atomicas. Esses limites podem ser encontrados comparando
a energia interna de cada configuracao e sao importantes para guiar a produgao experimental

de misturas atomicas (1, 15).
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3 Desenvolvimento e Resultados

3.1 Modelo tedrico

Comecamos considerando uma mistura imiscivel de duas espécies atomicas distintas, 1 e 2,
aprisionadas em um cilindro de volume V = wR?L. Como discutido, esse sistema é regido por

um par de equacoes estacionarias acopladas:

h2
—%V%ﬁ + 911 |¢>1|2 o1+ 912 |€f>2|2 $1 = p1d1 (3.1)
1
hQ 2 2 2
_ngv G2 + goz |a|” P2 + go1 |P1|” P2 = pacde (3.2)

Ao impor grande desbalango entre as espécies (N; >> Ny) e considerando parametros de

interagdo de mesma ordem (g;; ~ ¢gi;), as equagoes (3.1) e (3.2) podem ser aproximadas para

h2
o V21 + gu |1|* 61 = pugn (3.3)
my

h2
o V3¢ + gor |1 ]° 62 = p12¢2 (3.4)
ma

Isso faz com que a equagao (3.3) corresponda a GPE de um condensado uniforme. Nosso interesse
¢ estudar o aprisionamento em vortice, portanto atribui-se a 1 uma solugao de vortice tinico e

carga unitaria centrado na origem,

_ p i
¢1(psp, 2) = \/nlﬁ63 i (3.5)
onde a = v/2¢ corresponde ao raio do vértice. Assim, a equacdo (3.4) se torna
h2 p2
— V32 Ty = ) 3.6
9 P2 + ga1ma peppe P2 = p22 (3.6)

A interacao repulsiva entre as espécies faz com que os dtomos de 2 possam ocupar somente
posicoes proximas de p = 0, correspondendo a regiao de ntcleo do vértice, onde ha grande
deplegao no perfil de densidade de 1. Considerando esse fato, ao lidar com a segunda espécie
|2

podemos expandir |¢1|” ao redor de p = 0 e tomar como aproximagao

2 2

P p
—_— —., 3.7
p2 +CL2 CL2 ( )

Isso faz com que (3.4) se torne
2

n
o V002 L 00 = o, (3.8)
Mo a
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mostrando que o perfil de densidade da espécie majoritaria aprisiona a minoritaria como um
pseudo-potencial aproximadamente harménico. A solugao de (3.8) pode ser facilmente obtida

por separacao de variaveis,

9 2
o2 (p,0,2) = | me;LRng Ccos (ﬂZ) exp <_m22;;2 p2) : (3.9)

onde wy é definido pelo potencial efetivo

gani 5 1
a? p 2

Verr (p) = maws p?. (3.10)

3.2 Tratamento termodinamico usual

Como exemplo rapido, podemos utilizar o potencial efetivo definido pelo modelo tedrico para
determinar algumas propriedades termodinamicas da espécie aprisionada em vortice. Devemos
comegar com o célculo semicldssico da densidade de estados D (€). Para um gas ideal de bésons

aprisionado por um potencial arbitrario, ela é dada por (12)

m)*2

D(e) = 4W2h3 / dr\fe —V (3.11)

onde T (€) corresponde ao volume disponivel no espaco de fase, definido por e = V' (7). Substi-

tuindo V' (r) pela equagao (3.10), obtemos

L 2m3 [V (ma®L
D (e) = (2mae 3/2/ uv1 —uldu = || 7:;;. [ (ra >] €32 = Dye’/? (3.12)

7rh3m2w2 912N

Com a densidade de estados, podemos relacionar a temperatura ao nimero de particulas da

espécie aprisionada a partir da equagao (2.3) (9). Assim, para T' > T temos

21
€2 5/2
Ny =Dy [ —g—de = Dy (ksT) T (5/2) 932 (=), (3.13)
onde usamos . b1
S L 2"
W) =50y | e PO (3.14)

Portanto, lembrando que z = 1 quando T = T¢, a temperatura critica de condensacao da

segunda espécie ¢é

To =

N. RO/5 NiN, 1%°
2 — 6,693 x [9” ! 2] (3.15)

2/5
Dol (5/2) ¢ (5/ 2)1 ’ kpmy® |V (ma®L)

Vemos que a dependéncia de T com os diferentes parametros do sistema satisfaz o que
se esperaria. Aumentar a intensidade do potencial de aprisionamento, seja pelo aumento do

nimero de atomos da espécie 1 ou do préprio pardmetro de interacao g9, facilita a condensacao
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da segunda espécie. Além disso, ha uma dependéncia explicita com volume efetivo ocupado
pelo nicleo do vértice (ma®L), justamente onde ocorre o aprisionamento. Esse resultado oferece
informacgoes que seriam tteis na producgao experimental do sistema proposto.

Por completeza, também podemos determinar a energia total da espécie aprisionada, que
serve de ponto de partida para avaliar as demais quantidades termodinamicas do sistema. Assim,

seguindo o formalismo da mecanica estatistica, obtém-se

) T g1/2 (2)
= [T O de= Dy (s TP T (7/2) g1 (2) = gNeksT' 5

656 —
que nos mostra que a capacidade térmica a volume constante apresenta uma descontinuidade
bem definida em T' = T¢ (9):

o[- e

Esses resultados nao sdao uma consequéncia intrinseca ou nova do aprisionamento em voértice,

: (3.16)

mas sim uma ilustracdo do tratamento termodindmico usual que é dado a condensacao de
Bose-Einstein. Um estudo mais rigoroso deve considerar trocas térmicas entre as espécies, o que
requer modificar o modelo proposto. De qualquer forma, conhecer esse tratamento é importante
em qualquer contexto quando lidamos com sistemas de muitos corpos, por isso escolhemos

mostra-lo.

3.3 Limite de estabilidade

O estado de core ¢g é um estado de quasiparticula construido pela transferéncia de particulas

do vértice para um estado de momento angular nulo localizado em seu niicleo. Ele obedece

h2
o V2 + 2911 [¢1]? — 1 | o = podo, (3.18)
my

onde fp e p1 (0s potenciais quimicos de ¢g e ¢1) quantificam o custo (ou ganho) energético
devido a essa transferéncia (2). Rearranjando a equacdo (3.18) e substituindo |¢;|°, temos
2 2

h oo P
—TWV ¢o + 2911n1m¢0 = (/Lo + M1) oo, (3.19)

que pelo mesmo argumento por tras da equagao (3.8) pode ser aproximada para

h? 29111 o
2

_Tvz% P b0 = (po + 1) do. (3.20)

Sua solucao novamente pode ser obtida por separacao de variaveis

. 2m1w1R2n0 Uv4 miwi o
o) [P o (52) o (1 o




Capitulo 3. Desenvolvimento e Resultados 15

onde w; ¢é definido por

P = —mywip”. (3.22)

Para determinar se o sistema proposto ¢ estavel, podemos calcular explicitamente g e 1,
partindo dos funcionais de energia (3.23) e (3.24), e em seguida analisar como a segunda espécie

perturba sua configuracao energética.

(o + p11) No = /dT‘ l 7¢0V Po + 2911n1 p* ol ] (3.23)

o,
p1lNy = /dr [—2¢1V2¢1 + 911 |¢1|4] (3.24)
my
Como ¢y é autofungao da equagao (3.20), que é separavel em um oscilador harmonico bidimen-
sional e uma particula na caixa, imediatamente obtemos

h2m?
o + 1 = hwy + 5—— S L2 (3.25)

Tratando-se de temperaturas proximas do zero absoluto, a contribui¢ao cinética no eixo z pode

ser desprezada. Portanto, recuperando a = v/2€, nos resta
fo + p = hwy = o & 29110 — f. (3.26)

Para determinar y;, podemos reescrever o funcional (3.24) na forma

R h2 4a2p3 _|_p5 2911n1 p5
e / dp= Ny (K, +U 3.27
M1V 1 0 {m1R2 l(pQ + a2)3 + R2 (pz + a2)2 P 1 ( 1+ 11) ( )

e realizar as integracoes normalmente:

R |1 R? + a? R% (R? — 2a?)
K, = —1 3.28
YR [2 og( a? >+ 4(R? + a?)? (3:28)
29111 | R*(R? 4+ 24%) R? + a?
= —a®l 2
Un="g l 2(R+a?) P& (3.29)
Uma vez que R/a >> 1, as expressoes acima podem ser aproximadas por
h? R 1 h? R
K|~ 1 — |~ —1 .
LY R [Og(a)+4] miR2 Og( ) (3.30)
2a? R?
U11 ~ g11ny [1 — ﬁ lOg ( )] ~ g11n1 (331)
nos deixando com
h? R
1~ gng + —— s log ( ) (3.32)
e portanto
h? R
R~ — 1 — .
o~ gum = o log () (3.:33)
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Comparando os potenciais quimicos obtidos, evidentemente o decaimento para o estado de
core é energeticamente favoravel, uma vez que py > . Ambas as expressoes apresentam um
termo adicional além da contribuicdo uniforme que corresponde a energia cinética do vértice. A
dependéncia logaritmica estd ligada ao campo de velocidades proporcional a 1/p tipico de sua
estrutura (1). A transferéncia de uma particula do vortice para o estado de core é acompanhada
pela dissipacao da sua energia cinética rotacional, acarretando numa reducao da energia total do
condensado e do custo individual de cada transferéncia. Isso faz com que o condensado dissipe
momento angular e recupere seu estado fundamental.

2

h
—%VQ + g1 6o + 2011 |1 ]° — ,Ul‘| Po = foPo (3.34)
1

Agora, reinserindo a espécie 2 no nucleo do vértice através da equagao (3.34), é possivel

determinar como sua presenca afetard o tratando a interacdo perturbativamente. Uma vez que

272 R
fio — p1 = — log <> : (3.35)

my R2 a

para que a segunda espécie impeca o decaimento para o modo de core, o acréscimo de energia

devido a interacao deve ser:

5110 = ]\1[0 [ drs; [g1216217] 60 > 2 og (R) (3.36)

my R? a

Substituindo ¢y e ¢, na integral acima e reorganizando os termos constantes, temos

8R2g12n2m1w1w2m2 L 4 (T2 o0 miwi + Moo 9
dpg = 2T /0 cos (L) dz/o exp (—hp )pdp, (3.37)

que resulta em

(3.38)

3R2912n2 mM1Wi1Mows
dptg = .

2h

Com isso, recuperando as defini¢oes de wy, ws € a, a expressao (3.36) se torna

2 2h2
3R g1an2 V9122 - log (R> ' (3.39)
a? V9122 + /29110 my R? a

> log (x), é possivel definir um limite para a estabilidade do sistema que

miwi + moWwao

Uma vez que x°

depende somente de parametros experimentalmente controlaveis:

912 - 2h2
L+ \/2 (911/912) (M1 /m2) 3nam, R?

(3.40)

A equagao (3.40) nos mostra que, caso os parametros do sistema a satisfacam, a energia
de interacao entre as particulas do estado de core e da espécie 2 torna a transferéncia de

particulas do vortice suficientemente custosa para impedir seu decaimento. A figura 2 ilustra
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g11 = (g22, M2 =M g1 = @22, M2 = 0.2M g11 = 3Q22, M2 = M

2 3 2 3 2 3
gu/A gu/A gu/A

Figura 2 — Diagrama de fases construido a partir das equagoes (2.32) e (3.40); A = 2k /3nym, R2.
Nele vemos os regimes onde ocorre ou nao decaimento (ciano e verde) e o regime no
qual a mistura se torna miscivel (roxo).

Fonte: Elaborada pelo autor.

como diferentes parametros afetam os regimes do sistema. Podemos ver que misturas em que
mo > my apresentam regioes de instabilidade menores e que, em geral, a estabilizagdo do sistema
poderia ser delegada ao ajuste dos pardmetros de interacao inter e intra-espécies (16).

Esse limite por si s6 nao é suficiente para afirmar que o sistema mantém sua vorticidade
indefinidamente, pois ele foi determinado sem a consideragao de outros efeitos dissipativos. No
entanto, ele delimita condi¢oes que inviabilizam um canal de decaimento importante. Isso pode
ser levado em consideragao na producao experimental de misturas de superfluidos, ja que no
contexto proposto a segunda espécie pode ser usada como um elemento estabilizador para o
estado de vortice da espécie majoritaria, potencialmente estendendo seu tempo de vida. Essa
aplicagao também pode apontar um novo caminho para aprimorar técnicas de visualizagao in
situ da dindmica de vértices, dispensando o uso de imageamento por expansao balistica (17).

Esse trabalho é uma abordagem inicial e o modelo proposto ¢é relativamente simplista, como
se pretendia. Apesar disso, ele pdde ser utilizado para obter resultados interessantes e serve de
base para o desenvolvimento de discussoes mais rigorosas, através de sua modificacao gradual.
Préoximos passos devem investigar a validade e viabilidade da hipotese de grande desbalanco,
a dindmica de modos coletivos do sistema (1) e considerar trocas térmicas e transferéncia de

vorticidade entre as espécies.
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4 Conclusoes

Neste trabalho foi proposto um modelo tedrico analiticamente soltivel para tratar o possivel
aprisionamento em vortice de gases atomicos. Nele, o sistema considerado é composto por
uma mistura de duas espécies atomicas condensadas em regime imiscivel, no qual o niimero
de particulas de uma é muito superior a outra. Com uma aproximagao de campo médio foi
demonstrado que a espécie majoritaria, em estado de vértice, age como um potencial harmoénico
que aprisiona a espécie minoritaria em seu nucleo.

O potencial efetivo estabelecido pelo modelo foi utilizado para determinar a densidade de
estados da espécie minoritaria, partindo de uma abordagem semicléssica (9, 12). A densidade
de estados foi utilizada para determinar a nova temperatura critica de condensagao da espécie
minoritaria devido ao aprisionamento em voértice. Esse resultado apresentou-se autoconsistente
com a natureza fisica da condensacao. Por completeza e como um exemplo ilustrativo, também
foi calculada sua energia total, utilizada para determinar uma descontinuidade na capacidade
térmica (9).

Seguindo o mecanismo de decaimento proposto por Rokhsar (2), foi avaliado como a esta-
bilidade do estado de vortice é afetada pela presenca da segunda espécie aprisionada em seu
nicleo. Foi demonstrado que o potencial quimico do estado de core é estritamente negativo
em relagdo ao potencial quimico do condensado rotacional, com uma diferenca proporcional a
sua energia cinética. Esse resultado confirma o decaimento do voértice e delimita o quanto a
segunda espécie deve perturbar a configuragao energética do sistema para impedi-lo. Através
de uma andlise perturbativa, foi determinado o acréscimo de energia devido a interagdao com a
segunda espécie, estabelecendo um limite para a estabilidade do sistema dependente somente
de parametros experimentalmente controldveis. Finalmente, foi argumentado que essa andlise
aponta para possibilidades de desenvolvimento ou aprimoramento de técnicas de estabilizacao e

imageamento in situ de vortices em condensados de Bose-Einstein (17).
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